On The Fly! Mac OS
On The Fly! Mac OS
Fly 3.0 for Mac is available as a free download on our application library. This Mac download was checked by our built-in antivirus and was rated as safe. The most popular version among the application users is 2.0. This free Mac app is a product of Leonhard Lichtschlag. The application lies within Lifestyle Tools, more precisely Travel. Hey, thanks for watching! Everything that you'll needis and will be down below! (Music, Links, Discords, etc)Also, Calamari is for windows aswell!If you want. How to Delete Language Files on Mac to Brush the OS. Undoubtedly, macOS is a highly efficient and convenient platform. Though, even there you can find some useless components that lie dormant cluttering the system. The stark example is the numerous language files. In fact, the same can be said about language packs included in almost.
Apple's Macintosh computer supports a wide variety of fonts. This support was one of the features that initially distinguished it from other systems.
Fonts[edit]
System fonts[edit]
The primary system font in OS X El Capitan and above is San Francisco. OS X Yosemite used Helvetica Neue, and preceding versions largely employed Lucida Grande. For labels and other small text, 10 pt Lucida Grande was typically used. Lucida Grande is almost identical in appearance to the prevalent Windows font Lucida Sans, and contains a larger variety of glyphs.
MacOS ships with multiple typefaces, for multiple scripts, licensed from several sources. MacOS includes Roman, Japanese and Chinese fonts. It also supports sophisticated font techniques, such as ligatures and filtering.
Many of the classic Macintosh typefaces included with previous versions remained available, including the serif typefaces New York, Palatino, and Times, the sans-serif Charcoal and Chicago, Monaco, Geneva and Helvetica. Courier, a monospaced font, also remained.[1]
In the initial publicly released version of Mac OS X (March 2001), font support for scripts was limited to Lucida Grande and a few fonts for the major Japanese scripts. With each major revision of the OS, fonts supporting additional scripts were added.
Zapfino[edit]
Zapfino is a calligraphic typeface designed by and named after renowned typeface designer Hermann Zapf for Linotype.[2][3] Zapfino utilizes advanced typographic features of the Apple Advanced Typography (AAT) 'morx' table format and is included in OS X partially as a technology demo. Ligatures and character variations are extensively used. The font is based on a calligraphic example by Zapf in 1944. The version included with macOS is a single weight. Since then, Linotype has introduced “Linotype Zapfino Extra” which includes the additional “Forte” weight with more options and alternates.
Several of the GX fonts that Apple commissioned and originally shipped with System 7.5 were ported to use AAT and shipped with Mac OS X 10.2 and 10.3. Hoefler Text, Apple Chancery and Skia are examples of fonts of this heritage. Other typefaces were licensed from the general offerings of leading font vendors.
LastResort[edit]
The LastResort font is invisible to the end user, but is used by the system to display reference glyphs in the event that glyphs needed to display a given character are not found in any other available font. The symbols provided by the LastResort font place glyphs into categories based on their location in the Unicode system and provide a hint to the user about which font or script is required to view unavailable characters. Designed by Apple and extended by Michael Everson of Evertype for Unicode 4.1 coverage, the symbols adhere to a unified design. The glyphs are square with rounded corners with a bold outline. On the left and right sides of the outline, the Unicode range that the character belongs to is given using hexadecimal digits. Top and bottom are used for one or two descriptions of the Unicode block name. A symbol representative of the block is centered inside the square. The typeface used for the text cutouts in the outline is Chicago, otherwise not included with macOS. LastResort has been part of Mac OS since version 8.5, but the limited success of Apple Type Services for Unicode Imaging (ATSUI) on the classic Mac OS means that only users of macOS are regularly exposed to it.
Lucida Grande[edit]
Of the fonts that ship with macOS, Lucida Grande has the broadest character repertoire. This font provides a relatively complete set of Arabic, Roman, Cyrillic, Hebrew, Thai and Greek letters and an assortment of common symbols. All in all, it contains a bit more than 2800 glyphs (including ligatures).
In macOS v10.3 ('Panther'), a font called Apple Symbols was introduced. It complements the set of symbols from Lucida Grande, but also contains glyphs only accessible by glyph ID (that is, they have not been assigned Unicode code points). A hidden font called .Keyboard contains 92 visible glyphs, most of which appear on Apple keyboards.
Font management[edit]
System 6.0.8 and earlier[edit]
Originally, the Macintosh QuickDraw system software supported only bitmapped fonts. The original font set was custom designed for the Macintosh and was intended to provide a screen legibility. These system fonts were named after large cities, e.g. New York, Chicago, and Geneva. (See Fonts of the Original Macintosh.)
Bitmapped fonts were stored as resources within the System file. A utility called Font/DA Mover was used to install fonts into or remove fonts from the System file. Fonts could be embedded into Macintosh applications and other file types, such as a HyperCard stack. Unused fonts were stored in a suitcase file.
The ImageWriter printer supported a higher resolution mode where bitmap fonts with twice the screen resolution were automatically substituted for 'near letter quality' printing. (For example, a 24-point bitmapped font would be used for 12-point printing.) This feature was sometimes called two-times font printing. Some later Apple QuickDraw-based laser printers supported four-times font printing for letter quality output.
With the introduction of the LaserWriter and support for PostScript-compatible printers, the Mac system software initially supported outline fonts for printing only. These outline fonts could be printed in letter quality at any size. PostScript fonts came with two files; a bitmap font was installed into the System file, and an outline font file was stored in the System Folder. Some of the bitmapped “city” fonts were automatically replaced by PostScript fonts by the printer driver. Commercial typefaces such as Times and Helvetica began to be distributed by Apple, Adobe Systems and others.
The Adobe Type Manager (ATM) system extension allowed PostScript outline fonts to be displayed on screen and used with all printers (PostScript or not). This allowed for true WYSIWYG printing in a much broader set of circumstances than the base system software, however with a noticeable speed penalty, especially on Motorola 68000-based machines.
After the release of System 7, Apple added System 6 support for TrueType outline fonts through a freely available system extension, providing functionality similar to ATM. Apple provided TrueType outline files for the bitmapped 'city' system fonts, allowing letter quality WYSIWYG printing.
A reboot was required after installing new fonts unless using a font management utility such as Suitcase, FontJuggler or MasterJuggler.
System 7 – Mac OS 9[edit]
A highly touted feature of System 7 was integrated TrueType outline font support, which received industry support from Microsoft. Fonts were still stored in the System file but could be installed using drag-and-drop. To install new fonts, one had to quit all applications.
Despite this, ATM and PostScript Type 1 fonts continued to be widely used, especially for professional desktop publishing. Eventually Adobe released a free version of their utility, called ATM Light.
In System 7.1, a separate Fonts folder appeared in the System Folder. Fonts were automatically installed when dropped on the System Folder, and became available to applications after they were restarted. Font resources were generally grouped in suitcase files. However, rules for storing printer fonts varied greatly between different system, printer and application configurations until the advent of the new Fonts folder. Typically, they had to be stored directly in the System Folder or in the Extensions Folder.
System 7.5 added the QuickDraw GX graphics engine. TrueType GX supported ligatures and other advanced typography features. However little software supported these features and PostScript remained the standard.
Starting with Mac OS 8.5, the operating system supported data fork fonts, including Windows TrueType and OpenType. In addition, Apple created a new format, called>.dfont. PostScript variant.
Fonts in the /System/Library/Fonts folder and the /Library/Fonts folder are available to all users. Fonts stored in a user's ~/Library/Fonts folder are available to only that user. Previously, up to OS X 10.4, both Mac OS 9 applications running in the legacy Classic Environment and native applications could access fonts stored in the Mac OS 9 system folder
macOS includes a software rasterizer that supports PostScript. Thus eliminating the need for the Adobe Type Manager Light program. The built-in text editing supports advanced typesetting features such as adjustable kerning and baseline, as well as a few OpenType features.
Support for QuickDraw GX fonts was dropped in macOS in favor of TrueType fonts using AAT features. Bitmap fonts are only used on screen if there is a corresponding vector form (which is always used in printing).
Since OS X v10.3 (Panther), a utility called Font Book has been included with the operating system allowing users to easily install fonts and do basic font management.
Third-party font managers[edit]
As desktop publishing took off and PostScript and other outline font formats joined the bitmap fonts, the need for unified font management grew. A number of third parties have created tools, such as Suitcase, for managing font sets. For example, they allowed enabling or disabling fonts on-the-fly, and storing fonts outside of their normal locations. Some even allow the use of Windows .ttf font files natively on systems prior to macOS.
Font technology[edit]
TrueType and PostScript[edit]
TrueType is an outline font standard developed by Apple in the late 1980s, and later licensed to Microsoft, as a competitor to Adobe's Type 1 fonts used in PostScript, which dominated desktop publishing.
The outlines of the characters in TrueType fonts are made of straight line segments and quadratic Bézier curves, rather than the cubic Bézier curves in Type 1 fonts. While the underlying mathematics of TrueType is thus simpler, many type developers prefer to work with cubic curves because they are easier to draw and edit.
While earlier versions of the Mac OS required additional software to work with Type 1 fonts (as well as at least one bitmap copy of each Type 1 font to be used), macOS now includes native support for a variety of font technologies, including both TrueType and PostScript Type 1.
Microsoft, together with Adobe, created an extended TrueType format, called OpenType. Apple, however, continued to develop TrueType. A Zapf table, for example, maps composite glyphs to characters and vice versa and adds other features. The table was named after typeface creator Hermann Zapf with permission.[3]
QuickDraw GX[edit]
QuickDraw GX was a complete overhaul of the Macintosh graphics system, including the font system, which was rolled out for System 7.5 in 1995. QuickDraw GX fonts could be in either TrueType or PostScript Type 1 formats and included additional information about the glyphs and their purpose. Advanced features, such as ligatures, glyph variations, kerning information and small caps, could be used by any GX enabled application. Previously, they had typically been reserved for advanced typesetting applications.
Microsoft was refused a license to GX technology and chose to develop OpenType instead. GX typography and GX technology as a whole never saw widespread adoption. Support for GX was dropped in later versions.
AAT covers much of the same ground as OpenType. It incorporates concepts from the Multiple Master font format, which allows multiple axes of traits to be defined and an n-dimensional number of glyphs to be accessible within that space. AAT features do not alter the underlying characters, but do affect their representation during glyph conversion.
AAT is supported in IBM’s open source ICU library, which implements support for AAT fonts under Linux and other open source operating systems.
Hinting technology[edit]
Hinting is the process by which TrueType fonts are adjusted to the limited resolution of a screen or a relatively low resolution printer. Undesired features in the rendered text, such as lack of symmetry or broken strokes, can be reduced. Hinting is performed by a virtual machine that distorts the control points that define the glyph shapes so that they fit the grid defined by the screen better. Hinting is particularly important when rendering text at low effective resolution: that is, with few pixels per character.
Hinting is part of the TrueType specification, but Apple held three patents in the United States relating to the process:
- US 5155805 'Method and apparatus for moving control points in displaying digital typeface on raster output devices' (filed May 8, 1989)
- US 5159668 'Method and apparatus for manipulating outlines in improving digital typeface on raster output devices' (filed May 8, 1989)
- US 5325479 'Method and apparatus for moving control points in displaying digital typeface on raster output devices' (filed May 28, 1992)
Until they expired, Apple offered licensing of these patents. Microsoft had access to Apple's TrueType patents through cross-licensing. These patents have proven problematic to developers and vendors of open source software for TrueType rendering, such as FreeType. To avoid infringing on the patents, some software disregarded the hinting information present in fonts, resulting in visual artefacts. FreeType developed an automatic hinting engine, but it is difficult to beat the explicit hinting guidelines provided by the typeface designer. The problem of lacking hinting could also be compensated for by using anti-aliasing, although a combination of the two produces the best result.
Subpixel rendering[edit]
OS X/macOS uses subpixel rendering. Version 10.2 introduced subpixel rendering of type and Quartzvector graphics. This feature is enabled using the System Preferences panel 'General' (10.2) or 'Appearance' (10.3), by setting the font smoothing style to 'Medium — best for Flat Panel'. OS X 10.4 introduced an 'Automatic' setting which transparently chooses either 'Medium' or 'Standard,' depending on the type of main display. The quality of the rendering compared to Microsoft's ClearType and FreeType is contested, and is largely a matter of reader preference. However, Apple's approach differs from that of ClearType and FreeType in that TrueType hinting instructions are discarded for all but the smallest type sizes. This results in more consistency of rendering on Mac OS at the expense of allowing type designers a level of fine tuning through hints.
Fonts of the original Macintosh[edit]
Approximately 12 fonts were included with the classic Mac OS (versions 1–9). With the sole exception of Bill Atkinson's Venice typeface, the fonts included with the original Macintosh were designed by Susan Kare, who also designed most of the Macintosh's original icons.
The Macintosh was an early example of a mainstream computer using fonts featuring characters of different widths, often referred to as proportional fonts. Previously, most computer systems were limited to using monospaced fonts, requiring, for example, i and m to be exactly the same width. Vector-based fonts had yet to appear in the personal computer arena, at least for screen use, so all the original Mac's typefaces were bitmaps. Fonts were available in multiple sizes; those sizes installed on a system would be displayed in the font menu in an outline style.
From System 1 through Mac OS 7.6, the default system fonts for Mac OS were Chicago for menus and window titles and Geneva for Finder icons, and they could not be customized. The fonts for Finder icons became customizable starting in System 7. It is accessible in the 'Views' control panel. In Mac OS 8 and Mac OS 9, the default system font was changed to Charcoal menus and window titles, but it could be customized in Preferences.
Naming[edit]
After designing the first few fonts, the team decided to adopt a naming convention. First, they settled on using the names of stops along the Paoli, Pennsylvania, commuter rail line: Overbrook, Merion, Ardmore, and Rosemont. Steve Jobs had liked the idea of using cities as the names, but they had to be 'world class' cities.[4]
Variants[edit]
Variants of each font were algorithmically generated on-the-fly from the standard fonts. Bold, italic, outlined, underlined and shadowed variations were the most common, though some applications also included subscript and superscript.
Outline, shadow and underline are not always supported by modern software and fonts.
Apple logo[edit]
Apple's fonts and the Mac OS Romancharacter set include a solid Apple logo. One reason for including a trademark in a font is that the copyright status of fonts and typefaces is a complicated and uncertain matter. Trademark law, on the other hand, is much stronger. Third parties cannot include the Apple logo in fonts without permission from Apple.[citation needed] Apple states in the MacRoman to Unicode mapping file that:
On regular US QWERTY keyboards, the logo character can be typed using the key combination Shift Option K (⇧⌥K). In MacRoman, the Apple logo has a hex value of 0xF0. The Apple logo has not been assigned a dedicated Unicode code point, but Apple uses U+F8FF () in the Private Use Area.
Note that the logo does have a unique PostScript name in the Adobe Glyph List - /apple, mapping to F8FF.
List[edit]
- Athens (slab serif)
- Cairo was a bitmapdingbat font, most famous for the dogcow at the z character position.
- Chicago (sans-serif) was the default Macintosh system font in System 1–7.6. Also seen on LCD screens of earlier iPod models.
- Geneva (sans-serif) is designed for small point sizes and prevalent in all versions of the Mac user interface. Its name betrays its inspiration by the Swiss typeface Helvetica. Nine point Geneva is built into Old World ROM Macs.
- London (blackletter) was an Old English–style font.
- Los Angeles (script) was a thin font that emulated handwriting.
- Mobile was a bitmapdingbat font. Before System 6, it was known as Taliesin.
- Monaco (sans-serif, monospaced) is a fixed-width font well-suited for 9–12 pt use. Ten point Monaco is built into Old World ROM Macs.
- New York (serif) was a Times Roman–inspired font. The name alluded to the inspiration, even though the Times for which Times Roman was created was that of London, not New York.
- San Francisco was a whimsical font where each character looked as if it was a cutout from a newspaper, creating an intentional ransom note effect.
- Toronto (slab serif) was a geometric design. It was removed from System 6 and later.
- Venice (script) was a calligraphic font designed by Bill Atkinson.
See also[edit]
References[edit]
- ^'Fonts supplied with Mac OS'. Microsoft. 2001-05-29. Retrieved 2008-07-17.CS1 maint: discouraged parameter (link)
- ^Strizver, Ilene (2015-06-29). 'Hermann Zapf, ITC & Apple: The History of ITC Zapf Chancery & ITC Zapf Dingbats'. CreativePro.com. Retrieved 2017-05-27.
- ^ ab'The TrueType Font File - The Zapf table'. TrueType Reference Manual. Apple Computer, Inc. 2000-09-14. Retrieved 2017-07-25.
- ^'World Class Cities'. Folklore.org. Retrieved 2008-07-17.CS1 maint: discouraged parameter (link)
External links[edit]
- 'Mac OS 7.x, 8.x 9.x: Fonts Included With Major System Releases'. Apple Inc. 2002-06-11. Retrieved 2008-07-17.CS1 maint: discouraged parameter (link)
What is the difference between the TaylorMade Sim Max and Sim Max OS Irons?
The main differences between the TaylorMade Sim Max and Max OS irons is the that the Sim Max Iron has a lower loft, and produces less bounce than the Max OS.
Like most other sports, the game of golf has changed a lot in recent times. New technologies have emerged offering more choices to the players as far as golfing equipment is concerned. The modern golfing equipment helps players enhance the level of their game. The golf clubs, especially, are modified to yield better loft and distance traveled by the golf ball.
The irons are always used for distance shots and modern irons have certain new dimensions that make them superior when compared with the earlier ones. The TaylorMade Sim Max and Sim Max OS irons are examples of this. There are some similarities between these two clubs; however, it is the difference between the two that is being discussed here.
Detail | 5-iron | 7-iron | ||
SIM Max | SIM Max OS | SIM Max | SIM Max OS | |
Loft | 21.5° | 20° | 28.5° | 27° |
Lie | 62.0° | 62.0° | 63.0° | 63.0° |
Offset | 5.2mm | 6.2mm | 4.2mm | 5.2mm |
Bounce | 3° | 3° | 5° | 5° |
Length (ST/GR) | 38.50” | 38.50” | 37.25” | 37.25” |
Swingweight (ST/GR) | D1/D0 | D1/D0 | D1/D0 | D1/D0 |
Swingweight Women (ST/GR) | C2 | C2 | C2 | C2 |
In terms of the physical dimensions, the height of the SIM Max OS is 1mm higher in the toe. The offset is also an additional 1mm in the TaylorMade SIM Max OS irons compared with the SIM Max irons. Similarly, the overall sole width is wider by 3mm. A sole chamfer is provided in the rear which brings down this width to just 1mm.
On The Fly Macro
The slightly lower loft in the case of the SIM Max OS irons will help you hit the ball at longer distance.
There is a difference in the offset also while the bounce remains the same. There is no difference in the shaft length.
The significant differences between the two are in the head of the irons. A lot of aerodynamic technology is put to use to find the exact spots where the face of the club comes in contact with the ball at the time of the shot. The areas that do not come in contact with the golf ball are made thinner placing all the meat at the points of contact.
If you are not familiar with the suffix OS, it stands for ‘oversized’. A Speed Bridge has been added to the face to make a huge difference to the distance covered by the ball. Most of these irons are quite forgiving, which boosts the confidence of the players. Tests have indicated that the TaylorMade SIM Max OS irons can hit the longest shots.
Is the TaylorMade Sim Max Iron Better Than the Sim Max OS Iron?
The TaylorMade SIM Max and SIM Max OS are not very different, although the SIM Max OS has a marginally larger face. If the same player with identical swing and style were to use the two irons, he or she may be able to hit the golf ball at a longer distance with the TaylorMade SIM Max OS iron.
You may feel the forgiveness is also more in the SIM Max OS iron. The TaylorMade SIM Max OS is rated as the iron that can hit the longest distance among the contemporary irons that are used in the game. It gives the right trajectory for the ball and the loft is also corrected for achieving these results.
Is the TaylorMade Sim Max Iron better than the TaylorMade P790?
It may be difficult to make a general statement on this. Both have similar attributes and can hit the distance with ease. However, TaylorMade launched the SIM Max and SIM Max OS irons this year at a much lower price point than the TaylorMade P790 iron.
If you find the TaylorMade P790 iron at around $1,400 you will find the TaylorMade SIM Max irons can be purchased at around half this price, in the $750 range.
The answer to which is better between the two may also vary with the players. The company says it produces its golf clubs to cater to players with a range of handicaps from +4 to 25.
Distance (Sim Max Iron Vs P790 Iron)
A TaylorMade P790 can hit around 194 yards while the TaylorMade SIM Max OS 7-iron can hit up to 188 yards. A lower iron like the 4-iron in the TaylorMade SIM Max OS can reach a much longer distance, say up to 210 yards.
It must, however, be understood that the distance you can hit a ball will be decided largely by the swing, the exact spot on the clubhead that hits the ball, etc. Golfers who switched to the TaylorMade P790 or the newly launched SIM Max irons from a different golf club could add up to 10-15 yards to their shots.
This is one major difference that technology has brought to these clubs from TaylorMade. These clubs are regularly used by the top PGA pros.
Degree of Loft (Sim Max Iron Vs P790 Iron)
Here’s a comparison of the lofts you get with the TaylorMade SIM Max irons and the TaylorMade P790 irons. The shafts in both cases would be of the stock lengths.
4 | 5 | 6 | 7 | 8 | 9 | PW | |
SIM Max Irons | 19.0° | 21.5° | 25.0° | 28.5° | 32.5° | 38.0° | 43.5° |
P790 | 21.0° | 23.5° | 26.5° | 30.5° | 35.0° | 40.0° | 45.0° |
It is clear from the above table that the latest TaylorMade SIM Max and SIM Max OS irons have a slightly lower loft which ensures that your shot is carried a bit longer than that with the corresponding TaylorMade P790 irons.
The variable factors to be considered here are the player’s handicap and swing. These comparisons are for the same player using the two irons for a few shots and the average taken.
TaylorMade Sim Max Iron Vs M5 Iron
Here’s a comparison of the features of the two irons, the TaylorMade SIM Max iron and the M5 iron.
Iron | Club speed (mph) | Ball speed (mph) | Loft | Spin (rpm) | Carry (yds) |
TaylorMade SIM Max | 94.1 | 126.4 | 14.3° | 5162 | 182 |
TaylorMade M5 | 92.4 | 125 | 14.7° | 5616 | 178 |
The TaylorMade SIM Max iron certainly appears to have better features than the TaylorMade M5 iron based on this comparison. The distance may be more by just 4 yards here. However, in the hands of a professional player, the ball can go farther than this. These are average figures taken under test conditions.
On The Fly Mac Os Downloads
It is no secret that the modifications to the clubface in the TaylorMade SIM Max irons are superior in every aspect. These include the materials used, the increase in the sole width, and the area for hitting. The forgiveness is also greater, transferring all the advantages to the player.
TaylorMade has no qualms in admitting that they are aiming at those players with reasonable handicaps to go for their latest irons despite the costs, since it helps improve their game.
TaylorMade Sim Max Driver Vs M6 Iron
The TaylorMade M6 iron is positioned as superior to the M5 iron and that is reflected in this comparison of the key features of the club with that of the TaylorMade SIM Max. The difference is marginal.
Iron | Club speed (mph) | Ball speed (mph) | Loft | Spin (rpm) | Peak Height (yds) | Carry (yds) |
TaylorMade SIM Max | 94.1 | 126.4 | 14.3° | 5162 | 30 | 182 |
TaylorMade M6 | 94.2 | 127.1 | 14.9° | 5454 | 31 | 181 |
The difference in the spin by around 300rpm is apparent and the lower number for the TaylorMade SIM Max gives the iron a better result in terms of the trajectory and distance the ball is carried. The loft is also less by less than a degree but can make a difference.
The efficacy of the irons can improve with the user. This is probably the reason why even the senior pros in the circuit prefer these clubs in their armory. It gives them that extra edge they desperately look for in competitive play.
Sim Max Vs Sim Max OS Irons
It is important to first understand the concept that has gone into the development of these two hybrid irons, the TaylorMade SIM Max and the TaylorMade SIM Max OS, before the difference between the two can be discussed. There are many similarities and a few differences.
TaylorMade has gone all out to make the clubhead as large as possible, giving the golf player higher forgiveness and a wider area with which to hit the ball. There are a whole lot of changes in the way the shaft, the grip, and the other aspects are designed and constructed. The materials used are far superior to any you have seen before in golf clubs. These new and improved irons are positioned as game improvement irons.
The key features of the irons can be compared as below:
Iron | Club speed (mph) | Ball speed (mph) | Loft | Spin (rpm) | Peak Height (yds) | Carry (yds) |
TaylorMade SIM Max | 94.1 | 126.4 | 14.3° | 5162 | 30 | 182 |
TaylorMade SIM Max OS | 92.6 | 128.5 | 14.5° | 4822 | 31 | 188 |
The TaylorMade SIM Max OS comes out as all muscle and capable of hitting longer distances. The OS is supposed to mean oversize or offset. There are reviews on various forums that claim that the TaylorMade SIM Max iron hits the longest distance among all the irons.
In terms of the design changes, the Speed Bridge on the back of the clubhead is a new feature. The other new inclusion is the ECHO Damping System. This is meant to take care of the vibrations while taking the shots. Besides these, the company points out that the speed pocket technology and the low center of gravity are two technical inputs in the TaylorMade SIM Max and SIM Max OS irons to deliver better shots.
There are competing irons from the same brand, the TaylorMade M5 and M6, the predecessors to the SIM Max irons, and the TaylorMade P790. As it happens with any other product, the preference for one iron over the other will have to be left to the individual player.
SIM Max Vs Callaway Mavrik irons
Callaway Golf is a competitor to TaylorMade. They also make game improvement irons with superior technology that offers better results while playing. Their latest Mavrik series of irons are said to incorporate cutting-edge Artificial Intelligence or AI technology. Some of the unique aspects of the Callaway Mavrik irons include Tungsten weights to get the center of gravity right.
The details of the TaylorMade SIM Max irons have already been covered earlier. On a one-on-one comparison, the TaylorMade irons appear to give a better performance than the Callaway Mavrik irons. These include the distance hit in terms of yards and forgiveness. It may even be fair to say that the Speed Bridge on the TaylorMade SIM Max irons is the game-changer.
SIM Max Vs Ping G410 iron
The Ping G410 iron is another game improvement iron that comes close to what the TaylorMade SIM Max has to offer. The interesting part is that the manufacturer has turned the earlier theories on its head by reducing the overall size of the clubface but still delivering better forgiveness.
On a direct comparison between the Ping G410 iron and the SIM Max iron from TaylorMade, the Ping G410 iron delivered better distances, and players were very comfortable handling the club. The difference in carry was not too high; just 3 yards, but to the golfer, every yard matters.
The Ping G410 irons are made with the COR-Eye technology and the design of the sole and the deep top-rail undercut are combined to deliver the best game improvement results for the average golfer at the club level.
Continue Reading...
On The Fly! Mac OS